Plošný integrál I. druhu v systému Maple

Systém Maple obsahuje pro výpočet plošného integrálu I. druhu příkaz SurfaceInt , který je součástí rozšiřující knihovny VectorCalculus .

Syntaxe je následující

SurfaceInt(fce, [x,y,z] = dom)       , kde fce je integrand a dom je úsek plochy daný jednou z následujících konstrukcí:

  • Box(r1, r2, r3) ,
  • Sphere(cen, rad) ,
  • Surface(v) .

Více o použití těchto konstrukcí naleznete v kapitole o knihovně VectorCalculus nebo v následujících příkladech, popř.v nápovědě.

Řešené příklady

Příklad 1

Vypočtěte plošný integrál

po části ležící v I. oktantu hyperbolického paraboloidu ohraničeného válcem.

Řešení příkladu




Příklad 2

Vypočtěte plošný integrál


po části roviny z=1-x-y ležící v prvním oktantu.

Řešení příkladu




Příklad 3

Spočtěte plošný obsah rotačního paraboloidu omezeného rovinou z=0 .

Řešení příkladu




Příklad 4

Následující příklad ukazuje výpočet plošného integrálu pomocí jeho parametrického vyjádření . Určete hmotnost kulové plochy, je-li plošná hustota v každém bodě dané plochy rovna vzdálenosti bodu od osy z .
Rovnice kulové plochy (není regulární)

Plošná hustota

Řešení příkladu




Příklad 5

Určete plošný obsah závitu šroubové konoidy

Řešení příkladu

Ing. Vladimír Žák

Valid HTML 4.01 Transitional